Integrating a Stabilized Radial Basis Function Method with Lattice Boltzmann Method

نویسندگان

چکیده

The lattice Boltzmann method (LBM) has two key steps: collision and streaming. In a conventional LBM, the streaming is exact, where each distribution function perfectly shifted to neighbor node on uniform mesh arrangement. This advantage may curtail applicability of problems with complex geometries. To overcome this issue, high-order meshless interpolation-based approach proposed handle step. Owing its high accuracy, radial basis (RBF) one popular methods used for interpolation. general, RBF-based approaches suffer from some stability issues, their strongly depends shape parameter RBF. current work, stabilized RBF weak dependency parameter, which improves reduces parameter. Both LBM are solving three benchmark problems. results perfect compared analytical solutions or published results. Excellent agreements observed, little approach. Additionally, computational cost compared, marginal difference observed in favor LBM. conclusion, could report that viable alternative handling both simple

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Lattice Boltzmann method

Lattice Boltzmann method is relatively new method in the field of computational fluid dynamics. It has been derived from lattice gas automata and is still under development. Basic steps of the LBM (collision, streaming, boundary conditions, macroscopic quantities) will be presented. Comparison with the finite difference method that uses Navier-Stokes equation on a lid driven cavity benchmark te...

متن کامل

Consistent lattice Boltzmann method.

Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann's kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the valid...

متن کامل

Crystallographic Lattice Boltzmann Method

Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it ...

متن کامل

Parametric lattice Boltzmann method

Abstract The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10030501